

University Park 925 Central Ave University Park, IL 60484 Toll Free: 800.229.6872

Moreno Valley 22360 Goldencrest Dr Moreno Valley, CA 92553 Toll Free: 800.318.2021

Baytown
12855 Upland Way
Baytown, TX 77523
Toll Free: 866.391.3664
Beaver
172 Philpot Lane
Beaver, WV 25813

Mississauga
6811B Edwards Blvd Mississauga, ON L5T 2S2 Toll Free: 855.506.8823

NATIONAL TUBE SUPPLY \varnothing

Email: sales@nationaltubesupply.com Phone: 877.534.2700 nationaltubesupply.com

The Right Supply, Right On Time.

National Tube Supply has been a leading supplier of carbon \& alloy mechanical tubing across North America since its founding in 1990. We've spent the last three decades building our company around our customers to ensure we're providing the best products, services, and support.

As a member of the Bianco Group, National Tube Supply maintains a massive inventory and sources product from mills throughout the world. This means customers can trust that we'll have the materials they need in stock and often ready to ship next day!

Contact one of our experienced sales representatives to explore how National Tube Supply can help accelerate your supply chain with the right supply, right on time.

Table of Contents

Seamless Carbon Steel Pipe 3
Decimal Equivalents 4
Seamless Mechanical Tube Tolerance 5-6
DOM Mechanical Steel Tube Tolerances 7-8
Diameter Tolerances 7
Wall Tolerances 8
Outside Diameter Tolerances for Round Hot-Finish Tubing 9
Chemical Requirements 9
Wall Thickness Tolerances for Round Hot-Finish Tubing 9
Typical Chemistry Percentages by Grade 10
Typical Physical Properties by Grade 10
Pipe Dimensions and Weights 11-12

DOM

Welded and Drawn Over Mandrel Carbon Steel Tubing ASTM A-513/5
<. 156 Walls C1020
$\geq .156$ Walls C1026
ST52.3 $\geq .156$ " walls

CDS

Cold Drawn Seamless Carbon Steel Tubing ASTM A-519
Available grades 1026, ST52.3, 4130

ALY

Hot-Finish Seamless Alloy 4140/42 Alloy Steel Tubing
Annealed or Heat Treated ASTM A-519

HFS

Hot-Finish C1026 or A106 B/C Carbon Mechanical Tubing ASTM A-519

Seamless Carbon Steel Pipe

Variations in Outside Diameter
A106

NPS Designator	Permissible Variations in Outside Diameter	
	Over Inches	Under inches
$1 / 8$ to $11 / 2$, incl	1/64 (0.015)	1/64 (0.015)
Over $11 / 2$ to 4 , incl	1/32 (0.031)	1/32 (0.031)
Over 4 to 8, incl	1/16 (0.062)	1/32 (0.031)
Over 8 to 10, incl	$3 / 32$ (0.093)	1/32 (0.031)
Over 10	1\%	1\%

Decimal Equivalents

B.W.G. or Fraction	Decimal						
36	. 004	20	. 035	9	. 148	11/32	. 344
35	. 005	19	. 042	5/32	. 156	3/8	. 375
34	. 007	3/64	. 047	8	. 165	00	. 380
33	. 008	18	. 049	11/64	. 172	000	. 425
32	. 009	17	. 058	7	. 180	7/16	. 438
31	. 010	1/16	. 063	$3 / 16$. 188	0000	. 454
30	. 012	16	. 065	13/64	. 203	1/2	. 500
29	. 013	15	. 072	6	. 203	17/32	. 531
28	. 014	5/64	. 078	7/32	. 219	9/16	. 563
1/64	. 016	14	. 083	5	. 220	19/32	. 594
27	. 016	$3 / 32$. 094	4	. 238	5/8	. 625
26	. 018	13	. 095	$1 / 4$. 250	11/16	. 688
25	. 020	7/64	. 109	3	. 259	3/4	. 750
24	. 022	12	. 109	$9 / 32$. 281	13/16	. 813
23	. 025	11	. 120	2	. 284	7/8	. 875
22	. 028	1/8	. 125	1	. 300	15/16	. 938
1/32	. 031	10	. 134	5/16	. 313	1	1.000
21	. 032	9/64	. 141	0	. 340	2	2.000

Common Metric Conversion Factors

10 millimeters $=1$ centimeter
100 centimeters $=1$ meter
1000 grams $=1$ kilogram
1 centimeter = . 3937 inch
1 meter $=3.281$ feet
1 kilogram = 2.2046 pounds
1 inch $=2.540$ centimeters
1 foot $=30.48$ centimeters
$1 \mathrm{~kg} / \mathrm{cm}^{2}=14.22 \mathrm{psi}$

Seamless Mechanical Tube Tolerance

Cold Drawn Round Carbon Steel

Diameter Tolerances

OD Size Range Inches	Wall: Percent of OD	Unannealed or Stress Relief Annealed				Soft Annealed or Normalized				Oil Quenched \& Tempered
		OD Inches		ID Inches		OD Inches		ID Inches		
		Plus	Minus	Plus	Minus	Plus	Minus	Plus	Minus	Plus/Minus
Up to 0.499	All	. 004	. 000			. 005	. 002			. 005
0.500-1.699	All	. 005	. 000	. 000	. 005	. 007	. 002	. 002	. 007	. 007
1.700-2.099	All	. 006	. 000	. 000	. 006	. 006	. 005	. 005	. 006	. 008
2.100-2.499	All	. 007	. 000	. 000	. 007	. 008	. 005	. 005	. 008	. 009
2.500-2.899	All	. 008	. 000	. 000	. 008	. 009	. 005	. 005	. 009	. 010
2.900-3.299	All	. 009	. 000	. 000	. 009	. 011	. 005	. 005	. 011	. 012
3.300-3.699	All	. 010	. 000	. 000	. 010	. 013	. 005	. 005	. 013	. 013
3.700-4.099	All	. 011	. 000	. 000	. 011	. 013	. 007	. 010	. 010	. 014
4.100-4.499	All	. 012	. 000	. 000	. 012	. 014	. 007	. 011	. 011	. 015
4.500-4.899	All	. 013	. 000	. 000	. 013	. 016	. 007	. 012	. 012	. 017
4.900-5.299	All	. 014	. 000	. 000	. 014	. 018	. 007	. 013	. 013	. 018
5.300-5.549	All	. 015	. 000	. 000	. 015	. 020	. 007	. 014	. 014	. 019
5.550-5.999	Under 6 6 to $71 / 2$ Over 71⁄2	$\begin{aligned} & .010 \\ & .009 \\ & .018 \end{aligned}$	$\begin{aligned} & .010 \\ & .009 \\ & .000 \end{aligned}$	$\begin{aligned} & .010 \\ & .009 \\ & .009 \end{aligned}$	$\begin{array}{r} .010 \\ .009 \\ .009 \end{array}$	$\begin{aligned} & .018 \\ & .016 \\ & .017 \end{aligned}$	$\begin{aligned} & .018 \\ & .016 \\ & .015 \end{aligned}$	$\begin{aligned} & .018 \\ & .016 \\ & .016 \end{aligned}$	$\begin{aligned} & .018 \\ & .016 \\ & .016 \end{aligned}$	$\begin{aligned} & .025 \\ & .023 \\ & .023 \end{aligned}$
6.000-6.499	Under 6 6 to $71 / 2$ Over 71/2	$\begin{aligned} & .013 \\ & .010 \\ & .020 \end{aligned}$	$\begin{aligned} & .013 \\ & .010 \\ & .000 \end{aligned}$	$\begin{aligned} & .013 \\ & .010 \\ & .010 \end{aligned}$	$\begin{array}{r} .013 \\ .010 \\ .010 \end{array}$	$\begin{aligned} & .023 \\ & .018 \\ & .020 \end{aligned}$	$\begin{aligned} & .023 \\ & .018 \\ & .015 \end{aligned}$	$\begin{aligned} & .023 \\ & .018 \\ & .018 \end{aligned}$	$\begin{aligned} & .023 \\ & .018 \\ & .018 \end{aligned}$	$\begin{aligned} & .033 \\ & .025 \\ & .025 \end{aligned}$
6.500-6.999	Under 6 6 to $71 / 2$ Over 71⁄2	$\begin{aligned} & .015 \\ & .012 \\ & .012 \end{aligned}$	$\begin{aligned} & .015 \\ & .012 \\ & .012 \end{aligned}$	$\begin{aligned} & .015 \\ & .012 \\ & .012 \end{aligned}$	$\begin{aligned} & .015 \\ & .012 \\ & .012 \end{aligned}$	$\begin{aligned} & .027 \\ & .021 \\ & .021 \end{aligned}$	$\begin{aligned} & .027 \\ & .021 \\ & .021 \end{aligned}$	$\begin{aligned} & .027 \\ & .021 \\ & .021 \end{aligned}$	$\begin{aligned} & .027 \\ & .021 \\ & .021 \end{aligned}$	$\begin{array}{r} .038 \\ .029 \\ .029 \end{array}$
7.000-7.499	Under 6 6 to $71 / 2$ Over 71/2	$\begin{aligned} & .018 \\ & .013 \\ & .026 \end{aligned}$	$\begin{aligned} & .018 \\ & .013 \\ & .000 \end{aligned}$	$\begin{aligned} & .018 \\ & .013 \\ & .013 \end{aligned}$	$\begin{aligned} & .018 \\ & .013 \\ & .013 \end{aligned}$	$\begin{aligned} & .032 \\ & .023 \\ & .031 \end{aligned}$	$\begin{aligned} & .032 \\ & .023 \\ & .015 \end{aligned}$	$\begin{aligned} & .032 \\ & .023 \\ & .023 \end{aligned}$	$\begin{aligned} & .032 \\ & .023 \\ & .023 \end{aligned}$	$\begin{aligned} & .045 \\ & .033 \\ & .033 \end{aligned}$
7.500-7.999	Under 6 6 to $71 / 2$ Over 71/2	$\begin{aligned} & .020 \\ & .015 \\ & .029 \end{aligned}$	$\begin{aligned} & .020 \\ & .015 \\ & .000 \end{aligned}$	$\begin{aligned} & .020 \\ & .015 \\ & .015 \end{aligned}$	$\begin{aligned} & .020 \\ & .015 \\ & .015 \end{aligned}$	$\begin{aligned} & .035 \\ & .026 \\ & .036 \end{aligned}$	$\begin{aligned} & .035 \\ & .026 \\ & .015 \end{aligned}$	$\begin{aligned} & .035 \\ & .026 \\ & .026 \end{aligned}$	$\begin{aligned} & .035 \\ & .026 \\ & .026 \end{aligned}$	$\begin{aligned} & .050 \\ & .037 \\ & .037 \end{aligned}$

OD Size Range Inches	$\begin{aligned} & \text { Wall: Percent } \\ & \text { of } O D \end{aligned}$	Unannealed or Stress Relief Annealed				Soft Annealed or Normalized				Oil Quenched \& Tempered OD \& ID Inches
		OD Inches		ID Inches		OD Inches		ID Inches		
		Plus	Minus	Plus	Minus	Plus	Minus	Plus	Minus	Plus/Minus
8.000-8.499	Under 6 6 to $71 / 2$ Over 71/2	$\begin{aligned} & .023 \\ & .016 \\ & .031 \end{aligned}$	$\begin{aligned} & .023 \\ & .016 \\ & .000 \end{aligned}$	$\begin{aligned} & .023 \\ & .016 \\ & .015 \end{aligned}$	$\begin{aligned} & .023 \\ & .016 \\ & .016 \end{aligned}$	$\begin{aligned} & .041 \\ & .028 \\ & .033 \end{aligned}$	$\begin{aligned} & .041 \\ & .028 \\ & .022 \end{aligned}$	$\begin{aligned} & .041 \\ & .028 \\ & .028 \end{aligned}$	$\begin{aligned} & .041 \\ & .028 \\ & .028 \end{aligned}$	$\begin{array}{r} .058 \\ .040 \\ .040 \end{array}$
8.500-8.999	Under 6 6 to $71 / 2$ Over 71/2	$\begin{aligned} & .025 \\ & .017 \\ & .034 \end{aligned}$	$\begin{aligned} & .025 \\ & .017 \\ & .000 \end{aligned}$	$\begin{aligned} & .025 \\ & .017 \\ & .015 \end{aligned}$	$\begin{aligned} & .025 \\ & .017 \\ & .019 \end{aligned}$	$\begin{aligned} & .044 \\ & .030 \\ & .038 \end{aligned}$	$\begin{array}{r} .044 \\ .030 \\ .022 \end{array}$	$\begin{aligned} & .044 \\ & .030 \\ & .030 \end{aligned}$	$\begin{aligned} & .044 \\ & .030 \\ & .030 \end{aligned}$	$\begin{aligned} & .063 \\ & .043 \\ & .043 \end{aligned}$
9.000-9.499	Under 6 6 to $71 / 2$ Over 71⁄2	$\begin{aligned} & .028 \\ & .019 \\ & .037 \end{aligned}$	$\begin{aligned} & .028 \\ & .019 \\ & .000 \end{aligned}$	$\begin{aligned} & .028 \\ & .019 \\ & .015 \end{aligned}$	$\begin{aligned} & .028 \\ & .019 \\ & .022 \end{aligned}$	$\begin{aligned} & .045 \\ & .033 \\ & .043 \end{aligned}$	$\begin{aligned} & .045 \\ & .033 \\ & .022 \end{aligned}$	$\begin{aligned} & .049 \\ & .033 \\ & .033 \end{aligned}$	$\begin{aligned} & .049 \\ & .033 \\ & .033 \end{aligned}$	$\begin{aligned} & .070 \\ & .047 \\ & .047 \end{aligned}$
9.500-9.999	Under 6 6 to $71 / 2$ Over 71/2	$\begin{aligned} & .030 \\ & .020 \\ & .040 \end{aligned}$	$\begin{aligned} & .030 \\ & .020 \\ & .000 \end{aligned}$	$\begin{aligned} & .030 \\ & .020 \\ & .015 \end{aligned}$	$\begin{aligned} & .030 \\ & .020 \\ & .025 \end{aligned}$	$\begin{aligned} & .045 \\ & .035 \\ & .048 \end{aligned}$	$\begin{aligned} & .045 \\ & .035 \\ & .022 \end{aligned}$	$\begin{aligned} & .053 \\ & .035 \\ & .035 \end{aligned}$	$\begin{aligned} & .053 \\ & .035 \\ & .035 \end{aligned}$	$\begin{array}{r} .075 \\ .050 \\ .050 \end{array}$
10.000-10.999	Under 6 6 to $71 / 2$ Over 71/2	$\begin{aligned} & .034 \\ & .022 \\ & .044 \end{aligned}$	$\begin{aligned} & .034 \\ & .022 \\ & .000 \end{aligned}$	$\begin{aligned} & .034 \\ & .022 \\ & .015 \end{aligned}$	$\begin{array}{r} .034 \\ .022 \\ .029 \end{array}$	$\begin{aligned} & .045 \\ & .039 \\ & .055 \end{aligned}$	$\begin{array}{r} .045 \\ .039 \\ .022 \end{array}$	$\begin{array}{r} .060 \\ .039 \\ .039 \end{array}$	$\begin{array}{r} .060 \\ .039 \\ .039 \end{array}$	$\begin{aligned} & .080 \\ & .055 \\ & .055 \end{aligned}$
11.000-12.000	Under 6 6 to $71 / 2$ Over 71/2	$\begin{aligned} & .035 \\ & .025 \\ & .045 \end{aligned}$	$\begin{aligned} & .035 \\ & .025 \\ & .000 \end{aligned}$	$\begin{aligned} & .035 \\ & .025 \\ & .015 \end{aligned}$	$\begin{aligned} & .035 \\ & .025 \\ & .035 \end{aligned}$	$\begin{aligned} & .050 \\ & .045 \\ & .060 \end{aligned}$	$\begin{aligned} & .050 \\ & .045 \\ & .022 \end{aligned}$	$\begin{aligned} & .065 \\ & .045 \\ & .045 \end{aligned}$	$\begin{aligned} & .065 \\ & .045 \\ & .045 \end{aligned}$	

Wall Thickness Tolerances for Round Cold-Worked Tubing		
Wall Thickness Range as \% of Outside Diameter	Wall Thickness Tolerance Over and Under Nominal, \%	
	Up to	1.500 "
	1.499 ID	and Over
25 and Under	10.0	7.5
Over 25	12.5	10.0

Tabulated tolerances can be applied simultaneously to only two of three cross-sectional dimensions, i.e., OD \times Wall, $\mathrm{OD} \times \mathrm{ID}$, or ID \times Wall. ID tolerances apply only to tube specified OD x ID or ID x Wall... and to dimensions. 0.625 " and over when ID is at least half the OD. Wall thickness less than 3% of OD require added ovality tolerances of plus and minus $1 / 2 \%$ of mean OD. If water quench and temper is required or specified - refer to mill for applicable tolerances.

DOM Mechanical Steel Tube Tolerances

Cold Drawn Round Welded \& Drawn Over Mandrel

Diameter Tolerances

DOM Mechanical Steel Tube Tolerances

Cold Drawn Round Welded \& Drawn Over Mandrel
Wall Tolerances

Wall Thickness, Inches	$\begin{aligned} & \text { Including } \\ & .375 \text { to } \\ & .875 \text { OD } \end{aligned}$	$\begin{aligned} & \text { Over . } 875 \text { to } \\ & 1.875 \text { OD } \end{aligned}$	Over 1.875 to 3.750 OD	Over 3.750 to 15.000 OD	Wall Thickness, Inches	$\begin{aligned} & \text { Including } \\ & .375 \text { to } \\ & .875 \text { OD } \end{aligned}$	Over . 875 to 1.875 OD	Over 1.875 to $3.750 \text { OD }$	Over 3.750 to $15.000 \text { OD }$
. 028 \& . 035	$\begin{aligned} & +.002 \\ & -.002 \end{aligned}$	$\begin{aligned} & +.002 \\ & . .002 \end{aligned}$	$\begin{aligned} & +.002 \\ & . .002 \end{aligned}$. 284		$\begin{array}{r} +.005 \\ +.006 \end{array}$	$\begin{aligned} & +.005 \\ & . .006 \end{aligned}$	$\begin{aligned} & +.007 \\ & +.007 \end{aligned}$
. 049	$\begin{aligned} & +.002 \\ & -.002 \end{aligned}$	$\begin{aligned} & +.002 \\ & +.003 \end{aligned}$	$\begin{aligned} & +.002 \\ & +.003 \end{aligned}$. 300		$\begin{aligned} & +.006 \\ & -.006 \end{aligned}$	$\begin{aligned} & +.006 \\ & +.006 \end{aligned}$	$\begin{aligned} & +.008 \\ & +.008 \end{aligned}$
. 065	$\begin{aligned} & +.002 \\ & . .002 \end{aligned}$	$\begin{aligned} & +.002 \\ & +.003 \end{aligned}$	$\begin{aligned} & +.002 \\ & -.003 \end{aligned}$	$\begin{aligned} & +.004 \\ & -.004 \end{aligned}$. 320		$\begin{aligned} & +.007 \\ & +.007 \end{aligned}$	$\begin{aligned} & +.007 \\ & -.007 \end{aligned}$	$\begin{aligned} & +.008 \\ & +.008 \end{aligned}$
. 083	$\begin{aligned} & +.002 \\ & . .002 \end{aligned}$	$\begin{aligned} & +.002 \\ & -.003 \end{aligned}$	$\begin{aligned} & +.003 \\ & \hline-.003 \end{aligned}$	$\begin{aligned} & +.004 \\ & . .005 \end{aligned}$. 344		$\begin{aligned} & +.008 \\ & -.008 \end{aligned}$	$\begin{aligned} & +.008 \\ & -.008 \end{aligned}$	$\begin{aligned} & +.009 \\ & -.009 \end{aligned}$
. 095	$\begin{aligned} & +.002 \\ & . .002 \end{aligned}$	$\begin{aligned} & +.002 \\ & . .003 \end{aligned}$	$\begin{aligned} & +.003 \\ & -.003 \end{aligned}$	$\begin{aligned} & +.004 \\ & -.005 \end{aligned}$. 375			$\begin{aligned} & +.009 \\ & +.009 \end{aligned}$	$\begin{aligned} & +.009 \\ & -.009 \end{aligned}$
. 109	$\begin{aligned} & +.002 \\ & -.003 \end{aligned}$	$\begin{aligned} & +.002 \\ & . .004 \end{aligned}$	$\begin{aligned} & +.003 \\ & \hline .003 \end{aligned}$	$\begin{aligned} & +.005 \\ & -.005 \end{aligned}$. 400			$\begin{aligned} & +.010 \\ & +.010 \end{aligned}$	$\begin{aligned} & +.010 \\ & +.010 \end{aligned}$
. 120	$\begin{aligned} & +.003 \\ & +.003 \end{aligned}$	$\begin{aligned} & +.002 \\ & . .004 \end{aligned}$	$\begin{aligned} & +.003 \\ & \hline .003 \end{aligned}$	$\begin{aligned} & +.005 \\ & -.005 \end{aligned}$. 438			$\begin{aligned} & +.011 \\ & -.011 \end{aligned}$	$\begin{aligned} & +.011 \\ & +.011 \end{aligned}$
. 134		$\begin{aligned} & +.002 \\ & -.004 \end{aligned}$	$\begin{aligned} & +.003 \\ & -.003 \end{aligned}$	$\begin{aligned} & +.005 \\ & -.005 \end{aligned}$. 480			$\begin{aligned} & +.012 \\ & -.012 \end{aligned}$	$\begin{aligned} & +.012 \\ & -.012 \end{aligned}$
. 148		$\begin{aligned} & +.002 \\ & -.004 \end{aligned}$	$\begin{aligned} & +.003 \\ & -.003 \end{aligned}$	$\begin{aligned} & +.005 \\ & -.005 \end{aligned}$. 531			$\begin{aligned} & +.013 \\ & +.013 \end{aligned}$	$\begin{aligned} & +.013 \\ & +.013 \end{aligned}$
. 165		$\begin{aligned} & +.003 \\ & +.004 \end{aligned}$	$\begin{aligned} & +.003 \\ & -.004 \end{aligned}$	$\begin{aligned} & +.005 \\ & +.006 \end{aligned}$. 563			$\begin{aligned} & +.013 \\ & +.013 \end{aligned}$	$\begin{aligned} & +.013 \\ & +.013 \end{aligned}$
. 180		$\begin{aligned} & +.004 \\ & -.004 \end{aligned}$	$\begin{aligned} & +.003 \\ & -.005 \end{aligned}$	$\begin{aligned} & +.006 \\ & \hline .006 \end{aligned}$. 580			$\begin{aligned} & +.014 \\ & -.014 \end{aligned}$	$\begin{aligned} & +.014 \\ & -.014 \end{aligned}$
. 203		$\begin{aligned} & +.004 \\ & -.005 \end{aligned}$	$\begin{aligned} & +.004 \\ & -.005 \end{aligned}$	$\begin{aligned} & +.006 \\ & -.007 \end{aligned}$. 600			$\begin{aligned} & +.015 \\ & -.015 \end{aligned}$	$\begin{aligned} & +.015 \\ & -.015 \end{aligned}$
. 220		$\begin{aligned} & +.004 \\ & . .006 \end{aligned}$	$\begin{aligned} & +.004 \\ & . .006 \end{aligned}$	$\begin{aligned} & +.007 \\ & -.007 \end{aligned}$. 625			$\begin{aligned} & +.016 \\ & +.016 \end{aligned}$	$\begin{aligned} & +.016 \\ & -.016 \end{aligned}$
. 238		$\begin{aligned} & +.005 \\ & -.006 \end{aligned}$	$\begin{aligned} & +.005 \\ & -.006 \end{aligned}$	$\begin{aligned} & +.007 \\ & +.007 \end{aligned}$. 650				$\begin{aligned} & +.017 \\ & -.017 \end{aligned}$
. 259		$\begin{aligned} & +.005 \\ & -.006 \end{aligned}$	$\begin{aligned} & +.005 \\ & -006 \end{aligned}$	$\begin{aligned} & +.007 \\ & -.007 \end{aligned}$					

Outside Diameter Tolerances for Round Hot-Finish Tubing A519

Outside Diameter Size Range, in.	Outside Diameter Tolerance, in.	
	Over	Under
Up to 2.999	0.020	0.020
$3.000-4.499$	0.025	0.025
$4.500-5.999$	0.031	0.031
$6.000-7.499$	0.037	0.037
$7.500-8.999$	0.045	0.045
$9.000-10.750$	0.050	0.050

A Diameter tolerances are not applicable to normalized and tempered or quenched and tempered conditions

B The common range of sizes of hot finish tubes in $11 / 2^{\prime \prime}$ to $103 / 4$ " outside diameter with wall thickness at least 3% or more of outside diameter, but not less than 0.095 "

C Larger sizes are available; consult manufacturer for sizes and tolerances.

Chemical Requirements
A106

Chemical	Composition, \%		
	Grade B	Grade C	
Carbon, max ${ }^{\text {A }}$	0.30	0.35	0.35
Manganese	$0.29-1.06$	$0.29-1.06$	$0.29-1.06$
Phosphorus, max	0.035	0.035	0.035
Sulfur, max	0.035	0.035	0.035
Silicon, min	0.10	0.10	0.10
Chrome, max			
Copper, max	0.40	0.40	0.40
Molybdenum, max $^{\mathrm{B}}$	0.40	0.40	0.40
Nickel, max ${ }^{\mathrm{B}}$	0.15	0.15	0.15
Vanadium, max $^{\mathrm{B}}$	0.40	0.40	0.40

A For each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum will be permitted up to a maximum of 1.35%.

B Unless otherwise specified by the purchaser, for each reduction of 0.01% below the specified carbon maximum, and increase of 0.06% manganese above the specified maximum will be permitted up to a maximum of 1.65%

C These five elements combined shall not exceed 1%

Wall Thickness Tolerances for Round Hot-Finish Tubing

 A519| Wall Thickness Range as Percent of Outside Diameter | Wall Thickness Tolerance, ${ }^{\text {A Percent }}$ Over and Under Nominal | | |
| :---: | :---: | :---: | :---: |
| | Outside Diameter 2.999" and Smaller | Outside Diameter $3.000^{\prime \prime}$ to $5.999^{\prime \prime}$ | Outside Diameter $6.000^{\prime \prime}$ to 10.750 " |
| Under 15 | 12.5 | 10.0 | 10.0 |
| 15 and over | 10.0 | 7.5 | 10.0 |

Typical Chemistry Percentages by Grade

		Carbon	Manganese	Phosphorus, Max	Sulfur, Max	Silicon	Aluminum
1020	HF Seamless	0.18-0.23	0.30-0.60	0.040	0.050		
1020	CD Seamless	0.18-0.23	0.30-0.60	0.040	0.050		
1020	Welded SRA	0.17-0.23	0.30-0.60	0.035	0.035		
1026	HF Seamless	0.22-0.28	0.60-0.90	0.040	0.050		
1026	CD Seamless	0.22-0.28	0.60-0.90	0.040	0.050		
1026	Welded SRA	0.22-0.28	0.60-0.90	0.035	0.035		
ST52.3	Welded SRA	0.12-0.18	1.20-1.60	0.025	0.025	0.15-0.35	. 02 min
4140/42	HF Seamless	0.38-0.45	0.75-1.00	0.040	0.040	0.15-0.35	

Typical Physical Properties by Grade

		Yield	Tensile	Elongation (\%)	Hardness Rb	Charpy Impact (ft - lbs @-20C)
1020	HF Seamless	28,000	48,000	30	50	
1020	CD Seamless	60,000	70,000	5	75	
1020	Welded SRA	55,000	65,000	10	75	
1026	HF Seamless	35,000	60,000	25	70	
1026	CD Seamless	75,000	90,000	10	90	
1026	Welded SRA	65,000	75,000	10	80	
ST52.3	Welded SRA	75,000	85,000	18	85	
4140/42	HF Seamless	60,000	80,000	25	85	20

Pipe Dimensions and Weights

Carbon and Alloy

■ Wall Thickness in Inches

		Pipe Schedules													
		5	10	20	30	STD	40	60	E.H.	80	100	120	140	160	Double E.H.
1/8	. 405	$\begin{gathered} .035 \\ .1383 \end{gathered}$	$\begin{gathered} .049 \\ .1863 \end{gathered}$			$\begin{gathered} .068 \\ .2447 \end{gathered}$	$\begin{gathered} .068 \\ .2447 \end{gathered}$		$\begin{aligned} & .095 \\ & .3145 \end{aligned}$	$\begin{gathered} .095 \\ .3145 \end{gathered}$					
$1 / 4$. 540	$\begin{gathered} .049 \\ .2570 \end{gathered}$	$\begin{gathered} .065 \\ .3297 \end{gathered}$			$\begin{aligned} & .088 \\ & .4248 \end{aligned}$	$\begin{gathered} .088 \\ .4248 \end{gathered}$		$\begin{gathered} .119 \\ .5351 \end{gathered}$	$\begin{aligned} & .119 \\ & .5351 \end{aligned}$					
3/8	. 675	$\begin{gathered} .049 \\ .3276 \end{gathered}$	$\begin{gathered} .065 \\ .4235 \end{gathered}$			$\begin{gathered} .091 \\ .5676 \end{gathered}$	$\begin{gathered} .091 \\ .5676 \end{gathered}$		$\begin{aligned} & .126 \\ & .7388 \end{aligned}$	$\begin{gathered} .126 \\ .7388 \end{gathered}$					
1/2	. 840	$\begin{aligned} & .065 \\ & .5380 \end{aligned}$	$\begin{gathered} .083 \\ .6710 \end{gathered}$			$\begin{aligned} & .109 \\ & .8510 \end{aligned}$	$\begin{gathered} .109 \\ .8510 \end{gathered}$		$\begin{aligned} & .147 \\ & 1.088 \end{aligned}$	$\begin{gathered} .147 \\ 1.088 \end{gathered}$				$\begin{gathered} .187 \\ 1.304 \end{gathered}$	$\begin{gathered} .294 \\ 1.714 \end{gathered}$
$3 / 4$	1.050	$\begin{gathered} .065 \\ . ~ \end{gathered} 8388$	$\begin{gathered} .083 \\ .8572 \end{gathered}$			$\begin{aligned} & .113 \\ & 1.131 \end{aligned}$	$\begin{aligned} & .113 \\ & 1.131 \end{aligned}$		$\begin{gathered} .154 \\ 1.474 \end{gathered}$	$\begin{gathered} .154 \\ 1.474 \end{gathered}$				$\begin{array}{r} .218 \\ 1.937 \end{array}$	$\begin{gathered} .308 \\ 2.441 \end{gathered}$
1	1.315	$\begin{gathered} .065 \\ .8678 \end{gathered}$	$\begin{gathered} .109 \\ 1.404 \end{gathered}$			$\begin{aligned} & .133 \\ & 1.679 \end{aligned}$	$\begin{gathered} .133 \\ 1.679 \end{gathered}$		$\begin{gathered} .179 \\ 2.172 \end{gathered}$	$\begin{gathered} .179 \\ 2.172 \end{gathered}$				$\begin{gathered} .250 \\ 2.844 \end{gathered}$	$\begin{gathered} .358 \\ 3.659 \end{gathered}$
$11 / 4$	1.660	$\begin{gathered} .065 \\ 1.107 \end{gathered}$	$\begin{gathered} .109 \\ 1.806 \end{gathered}$			$\begin{aligned} & .140 \\ & 2.273 \end{aligned}$	$\begin{aligned} & .140 \\ & 2.273 \end{aligned}$		$\begin{gathered} .191 \\ 2.997 \end{gathered}$	$\begin{aligned} & .191 \\ & 2.997 \end{aligned}$				$\begin{gathered} .250 \\ 3.765 \end{gathered}$	$\begin{gathered} .382 \\ 5.214 \end{gathered}$
$11 / 2$	1.900	$\begin{gathered} .065 \\ 1.274 \end{gathered}$	$\begin{gathered} .109 \\ 2.085 \end{gathered}$			$\begin{aligned} & .145 \\ & 2.718 \end{aligned}$	$\begin{aligned} & .145 \\ & 2.718 \end{aligned}$		$\begin{gathered} .200 \\ 3.631 \end{gathered}$	$\begin{aligned} & .200 \\ & 3.631 \end{aligned}$				$\begin{gathered} .281 \\ 4.859 \end{gathered}$	$\begin{gathered} .400 \\ 6.408 \end{gathered}$
2	2.375	$\begin{array}{r} .065 \\ 1.604 \end{array}$	$\begin{aligned} & .109 \\ & 2.638 \end{aligned}$			$\begin{aligned} & .154 \\ & 3.653 \end{aligned}$	$\begin{aligned} & .154 \\ & 3.653 \end{aligned}$		$\begin{gathered} .218 \\ 5.022 \end{gathered}$	$\begin{gathered} .218 \\ 5.022 \end{gathered}$				$\begin{gathered} .344 \\ 7.462 \end{gathered}$	$\begin{gathered} .436 \\ 9.029 \end{gathered}$
21/2	2.875	$\begin{gathered} .083 \\ 2.475 \end{gathered}$	$\begin{gathered} .120 \\ 3.531 \end{gathered}$			$\begin{gathered} .203 \\ 5.793 \end{gathered}$	$\begin{gathered} .203 \\ 5.793 \end{gathered}$		$\begin{gathered} .276 \\ 7.661 \end{gathered}$	$\begin{gathered} .276 \\ 7.661 \end{gathered}$				$\begin{gathered} .375 \\ 10.01 \end{gathered}$	$\begin{gathered} .552 \\ 13.69 \end{gathered}$
3	3.500	$\begin{gathered} .083 \\ 3.029 \end{gathered}$	$\begin{aligned} & .120 \\ & 4.332 \end{aligned}$			$\begin{gathered} .216 \\ 7.576 \end{gathered}$	$\begin{gathered} .216 \\ 7.576 \end{gathered}$		$\begin{gathered} .300 \\ 10.25 \end{gathered}$	$\begin{gathered} .300 \\ 10.25 \end{gathered}$				$\begin{gathered} .438 \\ 14.32 \end{gathered}$	$\begin{gathered} .600 \\ 18.58 \end{gathered}$
$31 / 2$	4.000	$\begin{gathered} .083 \\ 3.472 \end{gathered}$	$\begin{gathered} .120 \\ 4.973 \end{gathered}$			$\begin{gathered} .226 \\ 9.109 \end{gathered}$	$\begin{aligned} & .226 \\ & 9.109 \end{aligned}$		$\begin{gathered} .318 \\ 12.50 \end{gathered}$	$\begin{gathered} .318 \\ 12.50 \end{gathered}$					$\begin{gathered} .636 \\ 22.85 \end{gathered}$
4	4.500	$\begin{gathered} .083 \\ 3.915 \end{gathered}$	$\begin{gathered} .120 \\ 5.613 \end{gathered}$			$\begin{gathered} .237 \\ 10.79 \end{gathered}$	$\begin{gathered} .237 \\ 10.79 \end{gathered}$		$\begin{gathered} .337 \\ 14.98 \end{gathered}$	$\begin{gathered} .337 \\ 14.98 \end{gathered}$		$\begin{gathered} .438 \\ 19.00 \end{gathered}$		$\begin{gathered} .531 \\ 22.51 \end{gathered}$	$\begin{gathered} .674 \\ 27.54 \end{gathered}$
$41 / 2$	5.000					$\begin{gathered} .247 \\ 12.54 \end{gathered}$			$\begin{gathered} .355 \\ 17.61 \end{gathered}$						
5	5.563	$\begin{gathered} .109 \\ 6.349 \end{gathered}$	$\begin{gathered} .134 \\ 7.770 \end{gathered}$			$\begin{gathered} .258 \\ 14.62 \end{gathered}$	$\begin{gathered} .258 \\ 14.62 \end{gathered}$		$\begin{gathered} .375 \\ 20.78 \end{gathered}$	$\begin{gathered} .375 \\ 20.78 \end{gathered}$		$\begin{gathered} .500 \\ 27.04 \end{gathered}$		$\begin{gathered} .625 \\ 32.96 \end{gathered}$	$\begin{gathered} .750 \\ 38.55 \end{gathered}$
6	6.625	$\begin{gathered} .109 \\ 7.585 \end{gathered}$	$\begin{gathered} .134 \\ 9.289 \end{gathered}$			$\begin{gathered} .280 \\ 18.97 \end{gathered}$	$\begin{gathered} .280 \\ 18.97 \end{gathered}$		$\begin{gathered} .432 \\ 28.57 \end{gathered}$	$\begin{gathered} .432 \\ 28.57 \end{gathered}$		$\begin{gathered} .562 \\ 36.39 \end{gathered}$		$\begin{gathered} .719 \\ 45.35 \end{gathered}$	$\begin{gathered} .864 \\ 53.16 \end{gathered}$

Pipe Dimensions and Weights

Carbon and Alloy

Wall Thickness in Inches

Pipe Size	OD in Inches	Pipe Schedules													
		5	10	20	30	STD	40	60	E.H.	80	100	120	140	160	Double E.H.
7	7.625					$\begin{gathered} .301 \\ 23.54 \end{gathered}$			$\begin{gathered} .500 \\ 38.04 \end{gathered}$						$\begin{gathered} .875 \\ 63.08 \end{gathered}$
8	8.625	$\begin{gathered} .109 \\ 9.914 \end{gathered}$	$\begin{gathered} .148 \\ 13.40 \end{gathered}$	$\begin{gathered} .250 \\ 22.36 \end{gathered}$	$\begin{gathered} .277 \\ 24.70 \end{gathered}$	$\begin{gathered} .322 \\ 28.55 \end{gathered}$	$\begin{gathered} .322 \\ 28.55 \end{gathered}$	$\begin{gathered} .406 \\ 35.64 \end{gathered}$	$\begin{gathered} .500 \\ 43.39 \end{gathered}$	$\begin{gathered} .500 \\ 43.39 \end{gathered}$	$\begin{gathered} .594 \\ 50.95 \end{gathered}$	$\begin{array}{r} .719 \\ 60.71 \end{array}$	$\begin{gathered} .812 \\ 67.76 \end{gathered}$	$\begin{gathered} .906 \\ 74.69 \end{gathered}$	$\begin{gathered} .875 \\ 72.42 \end{gathered}$
9	9.625					$\begin{gathered} .342 \\ 33.91 \end{gathered}$			$\begin{gathered} .500 \\ 48.73 \end{gathered}$						
10	10.75	$\begin{gathered} .134 \\ 15.19 \end{gathered}$	$\begin{gathered} .165 \\ 18.70 \end{gathered}$	$\begin{gathered} .250 \\ 28.04 \end{gathered}$	$\begin{gathered} .307 \\ 34.24 \end{gathered}$	$\begin{gathered} .365 \\ 40.48 \end{gathered}$	$\begin{gathered} .365 \\ 40.48 \end{gathered}$	$\begin{gathered} .500 \\ 54.74 \end{gathered}$	$\begin{gathered} .500 \\ 54.74 \end{gathered}$	$\begin{gathered} .594 \\ 64.43 \end{gathered}$	$\begin{gathered} .719 \\ 77.03 \end{gathered}$	$\begin{gathered} .844 \\ 89.29 \end{gathered}$	$\begin{aligned} & 1.000 \\ & 104.1 \end{aligned}$	$\begin{aligned} & 1.125 \\ & 115.6 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 104.1 \end{aligned}$
11	11.75					$\begin{gathered} .375 \\ 45.56 \end{gathered}$			$\begin{gathered} .500 \\ 60.08 \end{gathered}$						
12	12.75	$\begin{gathered} .165 \\ 22.18 \end{gathered}$	$\begin{gathered} .180 \\ 24.16 \end{gathered}$	$\begin{gathered} .250 \\ 33.38 \end{gathered}$	$\begin{gathered} .330 \\ 43.77 \end{gathered}$	$\begin{gathered} .375 \\ 49.56 \end{gathered}$	$\begin{gathered} .406 \\ 53.52 \end{gathered}$	$\begin{gathered} .562 \\ 73.15 \end{gathered}$	$\begin{gathered} .500 \\ 65.42 \end{gathered}$	$\begin{gathered} .688 \\ 88.63 \end{gathered}$	$\begin{gathered} .844 \\ 107.3 \end{gathered}$	$\begin{aligned} & 1.000 \\ & 125.5 \end{aligned}$	$\begin{gathered} 1.125 \\ 139.67 \end{gathered}$	$\begin{aligned} & 1.312 \\ & 160.3 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 125.5 \end{aligned}$
14	14.00		$\begin{array}{r} .250 \\ 36.71 \end{array}$	$\begin{gathered} .312 \\ 45.61 \end{gathered}$	$\begin{gathered} .375 \\ 54.57 \end{gathered}$	$\begin{gathered} .375 \\ 54.57 \end{gathered}$	$\begin{array}{r} .438 \\ 63.44 \end{array}$	$\begin{gathered} .594 \\ 85.05 \end{gathered}$	$\begin{gathered} .500 \\ 72.09 \end{gathered}$	$\begin{gathered} .750 \\ 106.1 \end{gathered}$	$\begin{array}{r} .938 \\ 130.9 \end{array}$	$\begin{aligned} & 1.094 \\ & 150.8 \end{aligned}$	$\begin{aligned} & 1.250 \\ & 170.2 \end{aligned}$	$\begin{aligned} & 1.406 \\ & 189.1 \end{aligned}$	
16	16.00		$\begin{gathered} .250 \\ 42.05 \end{gathered}$	$\begin{gathered} .312 \\ 52.27 \end{gathered}$	$\begin{gathered} .375 \\ 62.58 \end{gathered}$	$\begin{gathered} .375 \\ 62.58 \end{gathered}$	$\begin{gathered} .500 \\ 82.77 \end{gathered}$	$\begin{gathered} .656 \\ 107.5 \end{gathered}$	$\begin{gathered} .500 \\ 82.77 \end{gathered}$	$\begin{gathered} .844 \\ 136.6 \end{gathered}$	$\begin{aligned} & 1.031 \\ & 164.8 \end{aligned}$	$\begin{aligned} & 1.219 \\ & 192.4 \end{aligned}$	$\begin{aligned} & 1.438 \\ & 233.6 \end{aligned}$	$\begin{aligned} & 1.594 \\ & 245.3 \end{aligned}$	
18	18.00		$\begin{gathered} .250 \\ 47.39 \end{gathered}$	$\begin{gathered} .312 \\ 58.94 \end{gathered}$	$\begin{gathered} .438 \\ 82.15 \end{gathered}$	$\begin{gathered} .375 \\ 70.59 \end{gathered}$	$\begin{gathered} .562 \\ 104.7 \end{gathered}$	$\begin{gathered} .750 \\ 138.2 \end{gathered}$	$\begin{gathered} .500 \\ 93.45 \end{gathered}$	$\begin{gathered} .938 \\ 170.9 \end{gathered}$	$\begin{aligned} & 1.156 \\ & 208.0 \end{aligned}$	$\begin{aligned} & 1.375 \\ & 244.1 \end{aligned}$	$\begin{aligned} & 1.562 \\ & 274.2 \end{aligned}$	$\begin{aligned} & 1.781 \\ & 308.5 \end{aligned}$	
20	20.00		$\begin{gathered} .250 \\ 52.73 \end{gathered}$	$\begin{gathered} .375 \\ 78.60 \end{gathered}$	$\begin{gathered} .500 \\ 104.1 \end{gathered}$	$\begin{gathered} .375 \\ 78.60 \end{gathered}$	$\begin{gathered} .594 \\ 123.1 \end{gathered}$	$\begin{gathered} .812 \\ 166.4 \end{gathered}$	$\begin{gathered} .500 \\ 104.1 \end{gathered}$	$\begin{aligned} & 1.031 \\ & 208.9 \end{aligned}$	$\begin{aligned} & 1.281 \\ & 256.1 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 2964 \end{aligned}$	$\begin{aligned} & 1.750 \\ & 341.1 \end{aligned}$	$\begin{aligned} & 1.969 \\ & 379.2 \end{aligned}$	
24	24.00		$\begin{array}{r} .250 \\ 63.41 \end{array}$	$\begin{gathered} .375 \\ 94.62 \end{gathered}$	$\begin{gathered} .562 \\ 140.7 \end{gathered}$	$\begin{gathered} .375 \\ 94.62 \end{gathered}$	$\begin{gathered} .688 \\ 171.3 \end{gathered}$	$\begin{gathered} .969 \\ 238.4 \end{gathered}$	$\begin{gathered} .500 \\ 125.5 \end{gathered}$	$\begin{aligned} & 1.219 \\ & 296.6 \end{aligned}$	$\begin{aligned} & 1.531 \\ & 367.4 \end{aligned}$	$\begin{aligned} & 1.812 \\ & 429.4 \end{aligned}$	$\begin{aligned} & 2.062 \\ & 483.1 \end{aligned}$	$\begin{aligned} & 2.344 \\ & 542.1 \end{aligned}$	

NATIONAL TUBE SUPPLY \propto

nationaltubesupply.com

